Fused porphyrin-imidazole systems: new building blocks for synthesis of porphyrin arrays

Maxwell J. Crossley * and James A. McDonald

1置

School of Chemistry, The University of Sydney, NSW 2006, Australia

Received (in Cambridge, UK) 8th July 1999, Accepted 26th July 1999

Reaction of porphyrin-2,3-diones with aromatic aldehydes and $\mathrm{NH}_{4} \mathrm{OAc}$ in $\mathrm{AcOH}-\mathrm{CHCl}_{3}$ affords 2-aryl-1 H -imidazo-[4,5-b]porphyrins which, with appropriate substitution, are useful building blocks for the synthesis of multi-porphyrin arrays; porphyrin-tetraones are similarly converted into the corresponding bis-fused systems.

Multi-porphyrin systems that occur naturally have a variety of geometries between interacting chromophores. Most model compounds designed to mimic such porphyrin systems have relied on linkage through meso-positions or have used flexible chains linked through single positions. The only previous multiporphyrin models with β-pyrrolic rings on adjacent porphyrin rings were constructed by reaction of porphyrin-2,3-diones with aromatic 1,2-diamines. ${ }^{1,2}$ The formation of the imidazole ring in the synthesis of 2,3,5-triphenylimidazole (lophine) by reaction of an α-dione, benzil, with benzaldehyde and ammonia has been known since last century. ${ }^{3}$ We now report that por-phyrin-2,3-diones, despite the α-dione system being attached to a 5-membered heterocyclic ring, show similar reactivity towards aromatic aldehydes and ammonia. This provides a new method of functionalising the porphyrin macrocycle by introduction of a 2^{\prime}-arylimidazole ring fused across a β, β-pyrrolic position of the porphyrin and allows the synthesis of more elaborated systems by bridging of porphyrin units through the new functionality.

2-Aryl-1H-imidazo[4,5-b]porphyrins 3-7 \dagger were prepared in good yields by the condensation of porphyrin-2,3-dione ${ }^{1} \mathbf{1}$ with the corresponding arylaldehyde in the presence of excess
$\mathrm{NH}_{4} \mathrm{OAc}$ in a refluxing $1: 1$ mixture of $\mathrm{AcOH}-\mathrm{CHCl}_{3}$ for 1 to 24 h (Scheme 1). These reactions could be carried out readily on a multi-gram scale. The products 3-7 are easily purified by column chromatography over silica and recrystallisation. The ${ }^{1} \mathrm{H}$ NMR spectra of imidazoporphyrins 3-7 show a broad singlet at about 8.4 ppm , indicating the presence of the imidazole NH and the lack of symmetry in the spectra show that imidazole tautomerism is slow on the ${ }^{1} \mathrm{H}$ NMR timescale. In each of the reactions producing compounds 3-7, the corresponding $2^{2}, 2^{3}$-diarylpyrazino[2,3-b]porphyrin product $9 \dagger$ was formed in $10-15 \%$ yield. More-highly substituted porphyrins are available from similar reactions of aldehydes and $\mathrm{NH}_{4} \mathrm{OAc}$ with porphyrin-2,3,12,13-tetraone ${ }^{4} \mathbf{1 0}$. Linear extended bis(2-aryl1 H -imidazo) porphyrins 11 and $\mathbf{1 2 \dagger}$ were obtained (Scheme 2), again in good yields; the corresponding pyrazino compounds were also observed as minor products. 5,10,15,20-Tetrakis-(3,5-di-tert-butylphenyl)porphyrin-2,3,7,8-tetraone ${ }^{4}$ also reacts similarly with arylaldehydes to give bis-fused L-shaped extended systems.

Compounds 14 and 15 are useful building blocks for construction of a range of linear bis- and tris-porphyrin systems with butadiyne linkages ${ }^{5}$ generated by CuCl -mediated coupling of the terminal acetylenes. ${ }^{6-10}$ Compound 14 was obtained in 98% yield by desilylation of the ethynyl unit of zinc(iI) porphyrin 13 (Scheme 2). Compound 15 was obtained in two steps [metallation with zinc(II) and desilylation] from porphyrin 6 in 71% overall yield.

The dizinc(II) butadiyne-linked bis(imidazoporphyrin) $\mathbf{1 6}$ was prepared in 90% yield by stirring a solution of zinc(II) 2-[4-

Scheme 1 Reagents and conditions: i, $\mathrm{NH}_{4} \mathrm{OAc}, \mathrm{AcOH}-\mathrm{CHCl}_{3}, \Delta$ [3: $2 \mathrm{~h}(40 \%), 4: 6 \mathrm{~h}(54 \%), 5: 24 \mathrm{~h}(62 \%)$, 6: $4 \mathrm{~h}(48 \%)$ and 7:2 h(66\%)]; ii, $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, \Delta, 1 \mathrm{~h}(85 \%)$.

Scheme 2 Reagents and conditions: i, $\mathrm{NH}_{4} \mathrm{OAc}, \mathrm{AcOH}-\mathrm{CHCl}_{3}, \Delta[\mathbf{1 1 :} 48 \mathrm{~h}(31 \%)$ and 12: $6.5 \mathrm{~h}(31 \%)]$; ii, $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl} 2_{2}-\mathrm{MeOH}^{2}, \Delta$, $2 \mathrm{~h}(91 \%)$; iii, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, \Delta, 15 \mathrm{~min}(98 \%)$.
(ethynyl)phenyl]-1 H -imidazo[4,5-b]porphyrin 15 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with an excess of freshly-prepared CuCl and TMEDA in air at room temperature for 30 min (Scheme 3). The UV-vis spectrum of bisporphyrin $\mathbf{1 6} \dagger$ shows slight broadening of the Soret band and unaltered Q bands compared with the spectrum of the monomer $15 . \dagger$ This indicated that there is negligible ground state electronic communication between the porphyrin rings of 16.

Dizinc(II) bisporphyrin $\mathbf{1 6}$ was treated with 7 M HCl in a two-phase system to afford the free base butadiyne-linked bis(imidazoporphyrin) $17 \dagger$ in 93% yield. Bis(imidazoporphyrin) 17 was treated with $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1 equiv.) to afford a mixture of free base $17(28 \%)$, dizinc(II) $16(36 \%)$ and the desired monozinc(II) bis(imidazoporphyrin) $18 \dagger$ (31\%) after purification (Scheme 3). Photo-induced energy-transfer in butadiyne bis(imidazoporphyrin) system $18\left(1 \times 10^{-6} \mathrm{M}\right.$ in
CHCl_{3}) from the zinc(II) porphyrin to the free base porphyrin was found to be 80% efficient which accords with a Förster-type (dipole-dipole) electronic energy-transfer mechanism. ${ }^{11}$
The synthesis of linear tris(imidazoporphyrin) 19 illustrates the utility of the linear zinc(II) bis \{2-[4-(ethynyl)phenyl]-1 H imidazo\} porphyrin building block 14 to prepare larger ordered multi-porphyrin arrays. The linear trizinc(II) butadiyne-linked tris(imidazoporphyrin) $19 \dagger$ was prepared in 29% yield by a cross-coupling reaction between $\mathbf{1 4}$ (1 equiv.) and zinc(II) 2 -[4-(ethynyl)phenyl]-1 H-imidazo[4,5-b]porphyrin 15 (2.5 equiv.) using an excess of freshly-prepared CuCl and TMEDA in air at room temperature for 3 h (Scheme 3). Dizinc(II) butadiynelinked bis(imidazoporphyrin) $\mathbf{1 6}$ was obtained as a by-product in 45% yield.
The utility of the condensation is illustrated further by reaction of the [zinc(II) (imidazo)porphyrin]-appended arylaldehyde

Scheme 3 Reagents and conditions: i, $\mathrm{CuCl}, \mathrm{TMEDA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, stir for 30 min in air; ii, $\mathrm{HCl}(7 \mathrm{M}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, stir for 2 min ; iii, $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, \Delta, 1 \mathrm{~h}$; iv, CuCl , TMEDA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, stir for 3 h in air.

Scheme 4 Reagents and conditions: i, $\mathrm{NH}_{4} \mathrm{OAc}, \mathrm{AcOH}-\mathrm{CHCl}_{3}, \Delta, 72 \mathrm{~h}$.
$\mathbf{8}$ with zinc(II) porphyrin-2,3-dione 2 and $\mathrm{NH}_{4} \mathrm{OAc}$ in $\mathrm{AcOH}-$ CHCl_{3} at reflux for 72 h . This reaction gave the novel dizinc(II) bisporphyrin $\mathbf{2 0} \dagger$ in 42% yield (Scheme 4). The zinc-to-zinc distance in arene-linked bisporphyrin 20 was calculated ${ }^{12}$ to be $18.5 \AA$ which is significantly shorter relative to the zinc-to-zinc distance in the dizinc(II) bis(imidazoporphyrin) $\mathbf{1 6}$ (ca. $28.3 \AA$) and between the zinc ions in the terminal porphyrins of the trizinc(II) tris(imidazoporphyrin) 19 ($56.6 \AA$).

The use of these novel compounds and systems to probe further the influence of porphyrin orientation and alignment on interporphyrin electronic communication is under active investigation in our laboratory.

Acknowledgements

We thank the Australian Research Council for a research grant to M. J. C.

Notes and references

\dagger All imidazoporphyrins have been fully characterised by elemental analysis, mass spectroscopy, ${ }^{1} \mathrm{H}$ NMR spectrometry and spectroscopic techniques. Visible spectroscopic data of selected porphyrins: 5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)porphyrin: $\lambda_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{nm}$ $405 \mathrm{sh}(\log \varepsilon 4.91), 422(5.66), 487 \mathrm{sh}(3.66), 519(4.28), 555(4.04), 593$ (3.78), 648 (3.85); 3: 317 (4.30), 424 (5.50), 484 (3.75), 519 (4.23), 554 (4.02), 587 (3.89), 646 (3.45); 4: 422 (5.51), 519 (4.24), 554 (4.00), 588 (3.94), 647 (3.85); 6: 423 (5.51), 519 (4.35), 554 (4.01), 588 (3.92), 649 (3.62); 8: 346 (4.42), 431 (5.42), 524 (3.90), 550 (4.29), 592 (4.05); 9
$\mathrm{R}=\mathrm{C} \equiv \mathrm{CSiMe}_{3}: 382$ (3.86), 438 (5.33), 476 (3.41), 526 (3.36), 563 (3.70),
597 (3.99), 653 (3.40), 692 (3.20); 12: 326 (4.65), 420 (5.48), 517 (4.45), 552 (4.15), 587 (4.09), 640 (3.69); 15: 310 (4.41), 427 (5.43), 480 (3.39), 492 (4.31), 514 (3.68), 586 (4.03); 16: 348 (4.74), 426 (5.70), 513 (4.16), 550 (4.71), 587 (4.45); 17: 242 (4.66), 427 (5.85), 519 (4.75), 556 (4.38), 589 (4.29), 649 (3.91); 18: 241 (4.60), 429 (5.39), 519 (4.50), 552 (4.56), 588 (4.36), 649 (3.56); 19: 250 (4.82), 352 (5.01), 369 (5.00), 429 (5.87), 454 (5.83), 519 (4.50), 554 (4.87), 596 (4.80); 20: (toluene) 321 (4.60), 431 (5.68), 458 (5.43), 516 (4.15), 554 (4.69), 589 (4.42).

1 M. J. Crossley and P. L. Burn, J. Chem. Soc., Chem. Commun., 1987, 39.

2 M. J. Crossley and P. L. Burn, J. Chem. Soc., Chem. Commun., 1991, 1569.

3 B. Radziszewski, Ber., 1882, 15, 1493.
4 M. J. Crossley, L. J. Govenlock and J. K. Prashar, J. Chem. Soc., Chem. Commun., 1995, 2379.
5 D. P. Arnold, A. W. Johnson and M. Mahendran, J. Chem. Soc., Perkin Trans. 1, 1978, 366.
6 D. P. Arnold and L. J. Nitschinsk, Tetrahedron, 1992, 48, 8781.
7 D. P. Arnold, D. A. James, C. H. L. Kennard and G. Smith, J. Chem. Soc., Chem. Commun., 1994, 2131.
8 D. P. Arnold and D. A. James, J. Org. Chem., 1997, 62, 3460.
9 H. L. Anderson, Inorg. Chem., 1994, 33, 972.
10 R. W. Wagner, T. E. Johnson, F. Li and J. S. Lindsey, J. Org. Chem., 1995, 60, 5266.
11 T. Förster, Faraday Discuss. Chem. Soc., 1959, $27,7$.
12 SPARTAN version 4.0, Wavefunction Inc., Irvine, CA, USA, 1995.

